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Abstract
These notes are an introduction to the theory of experiments in social science. A well-

run experiment can guarantee that any effect you find is an unbiased estimate of the true
causal effect, and not a result of spurious correlation or bias. These notes explain why.
I introduce a basic model of causality, explain the conditions under which experiments
lead to unbiased estimates of causal effects, and discuss common violations of those con-
ditions. Finally, I provide some suggestions for further reading.

1 The Potential Outcomes Model
To understand why experiments are so good at getting at causal effects, we need a formal
way of thinking about causation. The way I will introduce is called the potential outcomes
model, which was figured out by Jerzy Neyman and Donald Rubin.1 It is not the only way
of thinking about causality, but it is useful for analyzing experiments.

Let’s say that Y is the effect we care about, and we want to estimate the effect, if any, of X
on Y. For example, X could be direct cash transfers, and Y could be long-run income. Does
receiving a direct cash transfer now improve one’s income in the long run?

To answer this question, we have to think about two possible worlds. The first possible
world is theworldwhere someone receives a direct cash transfer. In the other possible world,
they don’t receive that cash transfer. Suppose that the two possible worlds are identical,
except for that change and its potential consequences.2 X can take two values: In the first
world, X = 1, because the cash transfer was received. In the second world, X = 0, because
there was no cash transfer. Here’s the crucial step. Let’s say that your long-run income in
World 1 is Y(1), because it’s your income in the case you get a cash transfer. In World 2,
let’s say that it’s Y(0), because you did not receive a cash transfer. Economists call these
potential outcomes. There’s some randomness in the possible worlds: It’s possible you get a
cash transfer that would have helped you, but you contract a rare and deadly disease that has
negative effects on your income. But that event is unlikely, so what we really care about is
the average causal effect of cash transfers on long-run income. Because the possible worlds
are otherwise identical,3 this average causal effect is just

τ = E (Y(1)− Y(0)) . (Average Causal Effect)

1. Guido W. Imbens and Donald B. Rubin, Causal Inference for Statistics, Social, and Biomedical Sciences: An
Introduction (Cambridge, UK: Cambridge University Press, 2015), 23.

2. Actually, we only need them to be "sufficiently close." See David Lewis, “Causation,” in Causation, ed.
Ernest Sosa and Michael Tooley, Oxford Readings in Philosophy (Oxford, UK: Oxford University Press, 1993),
196.

3. I am tacitly making a standard assumption. It is called the "stable unit treatment value" assumption.
Basically, it means that there cannot be spillover effects; the outcome in one possible world cannot affect any
other possible world. This is reasonable when we are thinking of an average over possible worlds, but more
dubious when we are thinking about natural or field experiments.
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If you don’t know what the E represents, think of it as an "averaging function" which out-
puts the average of its input, so E(X) is the average of X.4 The greek letter τ is called "tau,"
pronounced like "cow" but with a "t," and it’s the traditional symbol used for representing a
caual effect.

Unfortunately, there’s a problem: We only ever live in one possible world or another,
and we can’t observe both. If we measure Y(1), we can’t also measure Y(0). Likewise, if
we measure Y(0), we can’t also measure Y(1). This is sometimes called the fundamental
problem of causal inference. We can get around this by using experiments.

2 Experiments and Causality
The core idea is that experiments eliminate spurious correlation and bias by randomizing
assignment to treatment and control. Remember that spurious correlation arises from a di-
rected acyclic graph that looks like Figure 1.5 If there is a causal arrow connecting X and Y,
we have measurement bias instead. If X is randomly assigned, then by definition it cannot
be caused by anything. So there can be no arrows leading into X, meaning we can’t have
spurious correlation or measurement bias.

X Y

Z

Figure 1: Spurious Correlation Depicted in a Directed Acylic Graph

Let’s work through this in more detail. In the last section, we had only one person. The
problem was that we couldn’t observe both their treated outcome Y(1); and their untreated
outcome, Y(0). If we have a lot of people, however, we can split them in half and observe
Y(1) for half andY(0) for the other half. Then, we can subtract the averages of the two groups
to get the Average Causal Effect. Here’s how this works. Suppose we have a population of
people, who we number 1, 2, . . . , n − 1, n. Suppose that i is the number of one such person.
We’ll write person i’s potential outcomes Yi(1) and Yi(0). We want to know the Average
Causal Effect Eτi, but we can’t measure both potential outcomes. Instead, we randomly split
the group in half. Half of the people are randomly assigned to receive treatment: they get
a cash transfer. Half of the people are randomly assigned not to receive treatment: they
don’t get a cash transfer. These groups are called the treatment group and control group,
respectively. For every person in the treatment group, we observe Yi(1). For every person in
the control group, we observe Yi(0). If we take the average of these groups, and subtract it,
that will be an unbiased estimate of E(τi).

To state this formally, let Zi be a random variable which is 1 if person i receives treatment,
and 0 if they do not. We need to make a distinction between Z and X, because one’s poten-
tial outcomes can affect receipt of treatment. For example, suppose you work for a health
insurance authority, and are interested in if early cancer screening reduces cancer mortality.

4. Formally, E is the "expectation operator." See e.g. Rick Durrett, Probability: Theory and Examples, https :
//services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf.

5. Judea Pearl, Causality, 2nd ed. (2000; Cambridge, UK: Cambridge University Press, 2009), 79.

https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf
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You invite people to get screened for cancer: the treatment group is people who show up, the
control group are people who don’t. You work for the insurer, so you know what happens
to people who show up and get screened, and those who don’t. Surprisingly, you find that
cancer screenings make peoplemore likely to get cancer! What happened? The answer is that
people are busy, and so those who show upwill be unemployed, or especially worried about
cancer, and so forth. They will have attributes—like a family history of cancer—which affect
both receipt of treatment and their potential outcomes. This creates measurement bias! We
express the dependence of Y(X) on Z by writing Y(X | Z). The symbol | means "given," or
"in the case that." You should read Yi(1 | Z = 1) as "person i’s treated outcome, in the case
that i actually received treatment."

Theorem. In a random experiment, the difference in means estimator

τ̂ = Y(1 | Z = 1)− Y(0 | Z = 0)

is an unbiased estimator of the Average Causal Effect. The overbar denotes sample average.

Proof. An estimator is unbiased if its expectation equals the true value. I will prove that
Eτ̂ = τ. Consider this expression directly:

Eτ̂ = E(Y(1 | Z = 1)− Y(0 | Z = 0)).

The average of a difference is the difference of the averages,6 so we have

Eτ̂ = E(Y(1 | Z = 1))− E(Y(0 | Z = 0)).

Because assignment to treatment is random, we know that Y and X are conditionally in-
dependent on Z. Heuristically, this means that if we know whether or not a unit received
treatment—its value of Z—we don’t learn anything else about Y if someone told us X. See
the mammogram example above for how this can fail. Mathematically, this implies

EY(1 | Z = 1) = EY(1).

The same holds for Y(0 | Z = 0). Thus, we have

Eτ̂ = EY(1)− EY(0).

On average, the sample mean is the population average,7 so the proof is complete. ■

Even better, the weak law of large numbers says approximately that as the sample size
gets very large, the variance of the sample mean goes to zero.8 So we can be sure that as we
replicate the experiment or increase the sample size, it’s likely that we will measure some-
thing very close to the true value. This is excellent news.

6. Formally, this is a special case of the linearity of expectation. See any probability text, like Durrett, Proba-
bility.

7. Again, I have assumed a stable unit treatment value here.
8. For a rigorous statement, see Adrianus Willem van der Vaart, Asymptotic Statistics (Cambridge, UK: Cam-

bridge University Press, 1998), 15.
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3 Natural and Field Experiments
There are many interesting questions, especially macrosocial questions, which cannot be
measured in a laboratory. Famous examples include the effect of contact with outgroups
on bigotry, and the causes of social revolutions. What’s a girl to do?

Social scientists have found clever ways of exploiting "as-if" randomness in the world to
approximate experimental conditions. Basically, we look for some feature in the real world
which, is not directly causally related to the outcome, but assigns units to treatment or con-
trol. Then, within those treatment or control groups, we can estimate the causal effect as if it
were a laboratory experiment.

Natural and field experiments are more complicated than laboratory experiments, be-
cause the way they assign treatment is imperfect. Rather than getting deep into the weeds
here, I will discuss one common problem with natural experiments and defer the rest to
further reading.

A major problem in field experiments which does not usually happen in the lab is "non-
compliance."9 Unlike in the lab, in a field experiment, not everyone assigned to treatment
takes treatment. If you send canvassers to households with instructions to talk about trans
rights, some people will not be home.10 Worse, the people who were home probably differ
systematically from those whowere not. We cannot be sure if that difference is salient for the
outcome variable, so we have reintroduced the possibility of measurement bias and spurious
correlation.

There are two possible approaches to handling this. The first is focusing on the average
intent-to-treat effect. An experimenter do not know if who was home is random, but they
can be sure that the doors your canvassers knock on is random, because the experimenter
did the random assignment. In that case, if one can measure outcomes, even for people who
were assigned to treatment but didn’t take it, one can estimate the effect of being assigned to
treatment on the outcome. Be careful: This is not the same as the average causal effect of X
on Y, because the treatment is no longer X = 1, it is assignment to treatment (Z = 1). In the
example, we are measuring the causal effect of having one’s door knocked on by a canvasser,
not the conversation itself.

The second approach is the average treatment effect on the treated. In this approach, we
break people up into four categories. People who take treatment when assigned to treatment
and don’t when assigned to control are called compliers. People who do the opposite of
what they’re told are called deniers. Finally, there are always-takers and never-takers. If we
assume there are no deniers, then the only people in the control group who take treatment
are the always-takers, so we can identify the proportion of compliers. Using this knowledge,
we can modify the average intent-to-treat effect to get at the average treatment effect on the
treated. Be careful: This is not the same as the average causal effect, because we are only
looking at the effect on peoplewho took treatment. Furthermore, if we believe the proportion
of deniers is significant, this method does not work.

A final caution about experiments: Not every interesting question can be answered using
an experiment of every type. There is a tendency in social science to answer questions which
work well with our methods, rather than answering interesting questions.11 Experiments of
any type are one tool for answering interesting question: be sure you have other tools in your
box.

9. In natural experiments, the problem of non-compliance takes the form of instrumental variable designs.
10. This was the procedure in David Broockman and Joshua Kalla, “Durably reducing transphobia: A field

experiment on door-to-door canvassing,” Science 352, no. 6282 (2016): 220–224.
11. Thiswas one of JoanRobinson’s criticisms ofAmerican economics. I consider it correct. Joan Robinson,The

Accumulation of Capital, 3rd ed., Palgrave Classics in Economics (1956; Houndmills, UK: Palgrave MacMillan,
2013), xxxi.
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4 Further Reading
(a) For a gentle introduction to the basics of probability, seeHacking.12 For amore rigorous

overview, Durrett13 is a classic, but I find it overly didactic. Bauer14 is pure measure
theory, but it suits my tastes better, and it has a sequel on probability theory.

(b) For more about the potential outcomes model, see Angrist and Pischke.15 A book by
one of the model’s originators is Imbens and Rubin.16 There is also a relatively clear
but very basic chapter on this model in Wasserman.17 You should also read Pearl,18
especially Chapter 1.

(c) For more about natural experiments in the social sciences, see Dunning.19 The book
contains some notable errors, so be careful. Some specific techniques are also covered in
Angrist and Pischke.20 One particularly important kind of natural experiment in social
science is the difference-in-difference estimator. For an overview of this, see Cattaneo,
Idrobo, and Titiunik;21 and for a discussion of how it is usually applied in political sci-
ence see de la Cuesta and Imai.22 If you find the idea of as-if randomization strange, you
should know that actually as-if randomness is at work even in laboratory experiments. For
a defence of this perhaps surprising idea, see Jaynes.23 Theorists in natural science typi-
cally call this kind of randomness "phenomenological," in the same way that a physical
theorist might be a phenomenologist.

(d) For field experiments the canonical text is Gerber and Green.24

(e) If you are uncomfortable—as I am—with the Lewis-Neyman-Rubin picture of counter-
factual causation, take a gander at Anscombe,25 or anything else in that edited volume.
For a defence of the idea that we can, in fact, directly observe causal effects and don’t
need to appeal to the notion of potential outcomes at all, see Fales.26 I largely agree
with Fales, but still think the Neyman-Rubin model is a useful way of thinking about
experiments.

12. IanHacking,An Introduction to Probability and Inductive Logic (2001; Cambridge, UK: CambridgeUniversity
Press, 2009).
13. Durrett, Probability.
14. Heinz Bauer, Measure and Integration Theory, trans. Robert Burckel (Berlin, DE: de Gruyter, 2001).
15. Joshua Angrist and Jörn-Steffen Pischke,Mostly Harmless Econometrics: An Empiricist’s Companion (Prince-

ton, NJ: Princeton University Press, 2008).
16. Imbens and Rubin, Causal Inference for Statistics, Social, and Biomedical Sciences.
17. Larry Wasserman, All of Statistics: A Concise Course in Statistical Inference, Springer Texts in Statistics (New

York, NY: Springer, 2004).
18. Pearl, Causality.
19. Thad Dunning, Natural Experiments in the Social Sciences (Cambridge, UK: Cambridge University Press,

2012).
20. Angrist and Pischke, Mostly Harmless Econometrics.
21. Matias D. Cattaneo, Nicolás Idrobo, and Rocío Titiunik, A Practical Introduction to Regression Discontinuity

Design: Foundations, Cambridge Elements (Cambridge, UK: Cambridge University Press, 2019).
22. Brandon de la Cuesta and Kosuke Imai, “Misunderstandings about the regression discontinuity design in

the study of close elections,” Annual Review of Political Science 19 (2016): 375–396.
23. Edwin T. Jaynes, “The Physics of Random Experiments,” chap. 10 in Probability Theory: The Logic of Science,

ed. G. Larry Bretthorst (Cambridge, UK: Cambridge University Press, 2003), 314–339.
24. Alan S. Gerber and Donald P. Green, Field Experiments: Design, Analysis, and Interpretation (New York, NY:

W. W. Norton, 2012).
25. Gertrude ElizabethMargaret Anscombe, “Causality andDetermination,” inCausation, ed. Ernest Sosa and

Michael Tooley, Oxford Readings in Philosophy (Oxford, UK: Oxford University Press, 1993).
26. Evan Fales, Causality and Universals (New York, NY: Routledge, 1990).
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